Image Reconstruction
[1]:
# This cells setups the environment when executed in Google Colab.
try:
import google.colab
!curl -s https://raw.githubusercontent.com/ibs-lab/cedalion/dev/scripts/colab_setup.py -o colab_setup.py
# Select branch with --branch "branch name" (default is "dev")
%run colab_setup.py
except ImportError:
pass
Notebook configuration
Decide for an example dataset with a sparse probe or a high-density probe for DOT. The notebook will load example data accordingly.
Also specify, if precomputed results of the photon propagation should be used and if the 3D visualizations should be interactive.
[2]:
# choose between two datasets
DATASET = "fingertappingDOT" # high-density montage
#DATASET = "fingertapping" # sparse montage
# choose a head model
HEAD_MODEL = "colin27"
# HEAD_MODEL = "icbm152"
# choose between the monte
FORWARD_MODEL = "MCX" # photon monte carlo
#FORWARD_MODEL = "NIRFASTER" # finite element method - NOTE, you must have NIRFASTer installed via runnning <$ bash install_nirfaster.sh CPU # or GPU> from a within your cedalion root directory.
# set this flag to False to actual compute the forward model results
PRECOMPUTED_FLUENCE = True
# set this flag to True to enable interactive 3D plots
INTERACTIVE_PLOTS = False
[3]:
import pyvista as pv
if INTERACTIVE_PLOTS:
pv.set_jupyter_backend('server')
else:
pv.set_jupyter_backend('static')
import os
import time
import warnings
from pathlib import Path
from tempfile import TemporaryDirectory
import matplotlib.pyplot as p
import numpy as np
import xarray as xr
from IPython.display import Image
from pint.errors import UnitStrippedWarning
import cedalion
import cedalion.dataclasses as cdc
import cedalion.datasets
import cedalion.geometry.registration
import cedalion.geometry.segmentation
import cedalion.imagereco.forward_model as fw
import cedalion.imagereco.tissue_properties
import cedalion.io
import cedalion.plots
import cedalion.sigproc.quality as quality
import cedalion.sigproc.motion_correct as motion_correct
import cedalion.vis.plot_sensitivity_matrix
from cedalion import units
from cedalion.imagereco.solver import pseudo_inverse_stacked
from cedalion.io.forward_model import FluenceFile, load_Adot
import cedalion.xrutils as xrutils
xrutils.unit_stripping_is_error()
xr.set_options(display_expand_data=False);
[4]:
# helper function to display gifs in rendered notbooks
def display_image(fname : str):
display(Image(data=open(fname,'rb').read(), format='png'))
Working Directory
In this notebook the output of the fluence and sensitivity calculations are stored in a temporary directory. This will be deleted when the notebook ends.
[5]:
temporary_directory = TemporaryDirectory()
tmp_dir_path = Path(temporary_directory.name)
Load a finger-tapping dataset
For this demo we load an example finger-tapping recording through either cedalion.datasets.get_fingertapping
or cedalion.datasets.get_fingertappingDOT
.
The snirf files of these datasets contains a single NIRS element with one block of raw amplitude data.
[6]:
if DATASET == "fingertappingDOT":
rec = cedalion.datasets.get_fingertappingDOT()
elif DATASET == "fingertapping":
rec = cedalion.datasets.get_fingertapping()
else:
raise ValueError("unknown dataset")
The location of the probes is obtained from the snirf metadata (i.e. /nirs0/probe/)
Note that units (‘m’) are adopted and the coordinate system is named ‘digitized’.
[7]:
geo3d_meas = rec.geo3d
display(geo3d_meas)
<xarray.DataArray (label: 346, digitized: 3)> Size: 8kB [mm] -77.82 15.68 23.17 -61.91 21.23 56.49 ... 14.23 -38.28 81.95 -0.678 -37.03 Coordinates: type (label) object 3kB PointType.SOURCE ... PointType.LANDMARK * label (label) <U6 8kB 'S1' 'S2' 'S3' 'S4' ... 'FFT10h' 'FT10h' 'FTT10h' Dimensions without coordinates: digitized
[8]:
# visualize the montage
cedalion.plots.plot_montage3D(rec["amp"], geo3d_meas)

The measurement list is a pandas.DataFrame
that describes which source-detector pairs form channels.
[9]:
meas_list = rec._measurement_lists["amp"]
display(meas_list.head(5))
sourceIndex | detectorIndex | wavelengthIndex | wavelengthActual | wavelengthEmissionActual | dataType | dataUnit | dataTypeLabel | dataTypeIndex | sourcePower | detectorGain | moduleIndex | sourceModuleIndex | detectorModuleIndex | channel | source | detector | wavelength | chromo | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | None | None | 1 | None | raw-DC | 1 | None | None | None | None | None | S1D1 | S1 | D1 | 760.0 | None |
1 | 1 | 2 | 1 | None | None | 1 | None | raw-DC | 1 | None | None | None | None | None | S1D2 | S1 | D2 | 760.0 | None |
2 | 1 | 4 | 1 | None | None | 1 | None | raw-DC | 1 | None | None | None | None | None | S1D4 | S1 | D4 | 760.0 | None |
3 | 1 | 5 | 1 | None | None | 1 | None | raw-DC | 1 | None | None | None | None | None | S1D5 | S1 | D5 | 760.0 | None |
4 | 1 | 6 | 1 | None | None | 1 | None | raw-DC | 1 | None | None | None | None | None | S1D6 | S1 | D6 | 760.0 | None |
Event/stimulus information is also stored in a pandas.DataFrame
.
[10]:
rec.stim
[10]:
onset | duration | value | trial_type | |
---|---|---|---|---|
0 | 23.855104 | 10.0 | 1.0 | 1 |
1 | 54.132736 | 10.0 | 1.0 | 1 |
2 | 84.410368 | 10.0 | 1.0 | 1 |
3 | 114.688000 | 10.0 | 1.0 | 1 |
4 | 146.112512 | 10.0 | 1.0 | 1 |
... | ... | ... | ... | ... |
125 | 1431.535616 | 10.0 | 1.0 | 5 |
126 | 1526.038528 | 10.0 | 1.0 | 5 |
127 | 1650.819072 | 10.0 | 1.0 | 5 |
128 | 1805.418496 | 10.0 | 1.0 | 5 |
129 | 1931.116544 | 10.0 | 1.0 | 5 |
130 rows × 4 columns
For clarity, events are given more descriptive names:
[11]:
if DATASET == "fingertappingDOT":
rec.stim.cd.rename_events( {
"1": "Control",
"2": "FTapping/Left",
"3": "FTapping/Right",
"4": "BallSqueezing/Left",
"5": "BallSqueezing/Right"
} )
elif DATASET == "fingertapping":
rec.stim.cd.rename_events( {
"1.0": "Control",
"2.0": "FTapping/Left",
"3.0": "FTapping/Right"
} )
# count number of trials per trial_type
display(
rec.stim.groupby("trial_type")[["onset"]]
.count()
.rename({"onset": "#trials"}, axis=1)
)
#trials | |
---|---|
trial_type | |
BallSqueezing/Left | 17 |
BallSqueezing/Right | 16 |
Control | 65 |
FTapping/Left | 16 |
FTapping/Right | 16 |
Preprocessing
Perform motion correction, conversion to optical density and bandpass filtering.
[12]:
rec["od"] = cedalion.nirs.int2od(rec["amp"])
rec["od_tddr"] = motion_correct.tddr(rec["od"])
rec["od_wavelet"] = motion_correct.wavelet(rec["od_tddr"])
# bandpass filter the data
rec["od_freqfiltered"] = rec["od_wavelet"].cd.freq_filter(
fmin=0.01, fmax=0.5, butter_order=4
)
Calculate block averages in optical density
[13]:
# segment data into epochs
epochs = rec["od_freqfiltered"].cd.to_epochs(
rec.stim, # stimulus dataframe
["FTapping/Left", "FTapping/Right"], # select fingertapping events, discard others
before=5 * units.s, # seconds before stimulus
after=30 * units.s, # seconds after stimulus
)
# calculate baseline
baseline = epochs.sel(reltime=(epochs.reltime < 0)).mean("reltime")
# subtract baseline
epochs_blcorrected = epochs - baseline
# group trials by trial_type. For each group individually average the epoch dimension
blockaverage = epochs_blcorrected.groupby("trial_type").mean("epoch")
# Plot block averages. Please ignore errors if the plot is too small in the HD case
noPlts2 = int(np.ceil(np.sqrt(len(blockaverage.channel))))
f,ax = p.subplots(noPlts2,noPlts2, figsize=(12,10))
ax = ax.flatten()
for i_ch, ch in enumerate(blockaverage.channel):
for ls, trial_type in zip(["-", "--"], blockaverage.trial_type):
ax[i_ch].plot(blockaverage.reltime, blockaverage.sel(wavelength=760, trial_type=trial_type, channel=ch), "r", lw=2, ls=ls)
ax[i_ch].plot(blockaverage.reltime, blockaverage.sel(wavelength=850, trial_type=trial_type, channel=ch), "b", lw=2, ls=ls)
ax[i_ch].grid(1)
ax[i_ch].set_title(ch.values)
ax[i_ch].set_ylim(-.02, .02)
ax[i_ch].set_axis_off()
ax[i_ch].axhline(0, c="k")
ax[i_ch].axvline(0, c="k")
p.suptitle("760nm: r | 850nm: b | left: - | right: --")
p.tight_layout()

Load segmented MRI scan
For this example use a segmentation of the Colin27 average brain.
[14]:
if HEAD_MODEL == "colin27":
SEG_DATADIR, mask_files, landmarks_file = cedalion.datasets.get_colin27_segmentation()
PARCEL_DIR = cedalion.datasets.get_colin27_parcel_file()
elif HEAD_MODEL == "icbm152":
SEG_DATADIR, mask_files, landmarks_file = cedalion.datasets.get_icbm152_segmentation()
PARCEL_DIR = cedalion.datasets.get_icbm152_parcel_file()
else:
raise ValueError("unknown head model")
The segmentation masks are in individual niftii files. The dict mask_files
maps mask filenames relative to SEG_DATADIR
to short labels. These labels describe the tissue type of the mask.
In principle the user is free to choose these labels. However, they are later used to lookup the tissue’s optical properties. So they must be map to one of the tabulated tissue types (c.f. cedalion.imagereco.tissue_properties.TISSUE_LABELS
).
The variable landmarks_file
holds the path to a file containing landmark positions in scanner space (RAS). This file can be created with Slicer3D.
[15]:
display(SEG_DATADIR)
display(mask_files)
display(landmarks_file)
'/home/runner/.cache/cedalion/v25.1.0/colin27_segmentation.zip.unzip/colin27_segmentation'
{'csf': 'mask_csf.nii',
'gm': 'mask_gray.nii',
'scalp': 'mask_skin.nii',
'skull': 'mask_bone.nii',
'wm': 'mask_white.nii'}
'landmarks.mrk.json'
Coordinate systems
Up to now we have geometrical data from three different coordinate reference systems (CRS):
The optode positions are in one space
CRS='digitized'
and the coordinates are in meter. In our example the origin is at the head center and y-axis pointing in the superior direction. Other digitization tools can use other units or coordinate systems.The segmentation masks are in voxel space (
CRS='ijk'
) in which the voxel edges are aligned with the coordinate axes. Each voxel has unit edge length, i.e. coordinates are dimensionless. Axis-aligned grids are computationally efficient, which is why the photon simulation code (MCX) uses this coordinate system.The voxel space (
CRS='ijk'
) is related to scanner space (CRS='ras'
orCRS='aligned'
) in which coordinates have physical units and coordinate axes point to the (r)ight, (a)nterior and s(uperior) directions. The relation between both spaces is given through an affine transformation (e.g.t_ijk2ras
). When loading the segmentation masks in Slicer3D this transformation is automatically applied. Hence, the picked landmark coordinates are exported in RAS space.The niftii file provides a string label for the scanner space. In this example the RAS space is called ‘aligned’ because the masks are aligned to another MRI scan.
To avoid confusion between these different coordinate systems, cedalion
tries to be explicit about which CRS a given point cloud or surface is in.
The TwoSurfaceHeadModel
The photon propagation considers the complete MRI scan, in which each voxel is attributed to one tissue type with its respective optical properties. However, the image reconstruction does not intend to reconstruct absorption changes in each voxel. The inverse problem is simplified, by considering only two surfaces (scalp and brain) and reconstruct only absorption changes in voxels close to these surfaces.
The class cedalion.imagereco.forward_model.TwoSurfaceHeadModel
groups together the segmentation mask, landmark positions and affine transformations as well as the scalp and brain surfaces. The brain surface is calculated by grouping together white and gray matter masks. The scalp surface encloses the whole head.
[16]:
head = fw.TwoSurfaceHeadModel.from_surfaces(
segmentation_dir=SEG_DATADIR,
mask_files = mask_files,
brain_surface_file= os.path.join(SEG_DATADIR, "mask_brain.obj"),
scalp_surface_file= os.path.join(SEG_DATADIR, "mask_scalp.obj"),
landmarks_ras_file=landmarks_file,
parcel_file=PARCEL_DIR,
brain_face_count=None,
scalp_face_count=None
)
[17]:
head.segmentation_masks
[17]:
<xarray.DataArray (segmentation_type: 5, i: 181, j: 217, k: 181)> Size: 36MB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Coordinates: * segmentation_type (segmentation_type) <U5 100B 'csf' 'gm' ... 'skull' 'wm' Dimensions without coordinates: i, j, k
[18]:
head.landmarks
[18]:
<xarray.DataArray (label: 4, ijk: 3)> Size: 96B [] 89.95 205.8 35.86 91.76 25.05 17.14 18.05 109.9 17.34 165.9 113.0 17.92 Coordinates: * label (label) <U3 48B 'Nz' 'Iz' 'LPA' 'RPA' type (label) object 32B PointType.LANDMARK ... PointType.LANDMARK Dimensions without coordinates: ijk
[19]:
head.brain
[19]:
TrimeshSurface(mesh=<trimesh.Trimesh(vertices.shape=(15002, 3), faces.shape=(29988, 3))>, crs='ijk', units=<Unit('dimensionless')>, vertex_coords={'parcel': array(['VisCent_ExStr_8_LH', 'VisCent_ExStr_8_LH', 'VisCent_Striate_2_LH',
..., 'SalVentAttnA_ParMed_6_RH', 'ContA_PFCl_5_RH',
'Background+FreeSurfer_Defined_Medial_Wall_RH'],
shape=(15002,), dtype='<U44')})
[20]:
head.scalp
[20]:
TrimeshSurface(mesh=<trimesh.Trimesh(vertices.shape=(10050, 3), faces.shape=(20096, 3))>, crs='ijk', units=<Unit('dimensionless')>, vertex_coords={})
TwoSurfaceHeadModel.from_surfaces
converts everything into voxel space (CRS='ijk'
)
[21]:
head.crs
[21]:
'ijk'
The transformation matrix to translate from voxel to scanner space:
[22]:
head.t_ijk2ras
[22]:
<xarray.DataArray (aligned: 4, ijk: 4)> Size: 128B [mm] 1.0 0.0 0.0 -90.0 0.0 1.0 0.0 -126.0 0.0 0.0 1.0 -72.0 0.0 0.0 0.0 1.0 Dimensions without coordinates: aligned, ijk
Changing between coordinate systems:
[23]:
head_ras = head.apply_transform(head.t_ijk2ras)
display(head_ras.crs)
display(head_ras.brain)
'aligned'
TrimeshSurface(mesh=<trimesh.Trimesh(vertices.shape=(15002, 3), faces.shape=(29988, 3))>, crs='aligned', units=<Unit('millimeter')>, vertex_coords={'parcel': array(['VisCent_ExStr_8_LH', 'VisCent_ExStr_8_LH', 'VisCent_Striate_2_LH',
..., 'SalVentAttnA_ParMed_6_RH', 'ContA_PFCl_5_RH',
'Background+FreeSurfer_Defined_Medial_Wall_RH'],
shape=(15002,), dtype='<U44')})
Optode Registration
The optode coordinates from the recording must be aligned with the scalp surface. Currently, cedaĺion
offers a simple registration method, which finds an affine transformation (scaling, rotating, translating) that matches the landmark positions of the head model and their digitized counter parts. Afterwards, optodes are snapped to the nearest vertex on the scalp.
[24]:
geo3d_snapped_ijk = head.align_and_snap_to_scalp(geo3d_meas)
display(geo3d_snapped_ijk)
<xarray.DataArray (label: 346, ijk: 3)> Size: 8kB [] 11.61 128.0 90.59 22.65 134.1 125.5 ... 172.7 138.4 33.95 173.3 127.9 33.21 Coordinates: type (label) object 3kB PointType.SOURCE ... PointType.LANDMARK * label (label) <U6 8kB 'S1' 'S2' 'S3' 'S4' ... 'FFT10h' 'FT10h' 'FTT10h' Dimensions without coordinates: ijk
[25]:
plt = pv.Plotter()
cedalion.plots.plot_surface(plt, head.brain, color="w")
cedalion.plots.plot_surface(plt, head.scalp, opacity=.1)
cedalion.plots.plot_labeled_points(plt, geo3d_snapped_ijk)
plt.show()

Simulate light propagation in tissue
cedalion.imagereco.forward_model.ForwardModel
is a wrapper around pmcx. Using the data in the head model it prepares the inputs for either pmcx or NIRFASTer and offers functionality to calculate the sensitivty matrix.
[26]:
fwm = cedalion.imagereco.forward_model.ForwardModel(head, geo3d_snapped_ijk, meas_list)
Run the simulation
The compute_fluence_mcx
and compute_fluence_nirfaster
methods simulate a light source at each optode position and calculate the fluence in each voxel. By setting RUN_PACKAGE
, you can choose between the pmcx or NIRFASTer package to perform this simulation. PLEASE NOTE: if you USE_CACHED data (download the example data) be aware that the file is quite big (~2GB).
[27]:
if PRECOMPUTED_FLUENCE:
if FORWARD_MODEL == "MCX":
fluence_fname = cedalion.datasets.get_precomputed_fluence(DATASET, HEAD_MODEL)
elif FORWARD_MODEL == "NIRFASTER":
raise NotImplementedError(
"Currently there are no precomputed NIRFASTER results available"
)
else:
fluence_fname = tmp_dir_path / "fluence.h5"
if FORWARD_MODEL == "MCX":
fwm.compute_fluence_mcx(fluence_fname)
elif FORWARD_MODEL == "NIRFASTER":
fwm.compute_fluence_nirfaster(fluence_fname)
The photon simulation yields the fluence in each voxel for each wavelength:
fluence_all
is axr.DataArray
with dimensions: (‘label’, ‘wavelength’, ‘i’, ‘j’, ‘k’),i.e. for each optode and wavelength it stores the 3D image of the computed fluence in each voxel
fluence_at_optodes
is axr.DataArray
with dimensions: (‘optode1’, ‘optode2’, ‘wavelength’).It contains the fluence directly at the position of the optodes, used for normalization purposes.
Both arrays are stored on disk in the hdf5 file at fluence_fname
and should be queried through cedalion.io.forward_model.FluenceFile
.
Also, for a each combination of two optodes, the fluence in the voxels at the optode positions is calculated.
Plot fluence
To illustrate the tissue probed by light travelling from a source to the detector two fluence profiles need to be multiplied.
[28]:
# for plotting use a geo3d without the landmarks
geo3d_plot = geo3d_snapped_ijk[geo3d_snapped_ijk.type != cdc.PointType.LANDMARK]
[29]:
time.sleep(1)
plt = pv.Plotter()
if DATASET == "fingertappingDOT":
src, det, wl = "S5", "D16", 760
elif DATASET == "fingertapping":
src, det, wl = "S2", "D3", 760
else:
raise ValueError("unknown dataset")
# fluence_file.get_fluence returns a 3D numpy array with the fluence
# for a specified source and wavelength.
with FluenceFile(fluence_fname) as fluence_file:
f = fluence_file.get_fluence(src, wl) * fluence_file.get_fluence(det, wl)
f[f <= 0] = f[f > 0].min()
f = np.log10(f)
vf = pv.wrap(f)
plt.add_volume(
vf,
log_scale=False,
cmap="plasma_r",
clim=(-10, 0),
)
cedalion.plots.plot_surface(plt, head.brain, color="w")
cedalion.plots.plot_labeled_points(plt, geo3d_plot, show_labels=False)
cog = head.brain.vertices.mean("label")
cog = cog.pint.dequantify().values
plt.camera.position = cog + [-300, 30, 100]
plt.camera.focal_point = cog
plt.camera.up = [0, 0, 1]
plt.show()

Calculate the sensitivity matrices
The forward model’s function compute_sensitivity
calculates the sensitivity matrix from the fluence file and saves the result in a new file.
[30]:
sensitivity_fname = tmp_dir_path / "sensitivity.h5"
fwm.compute_sensitivity(fluence_fname, sensitivity_fname)
The sensitivity matrix describes how an absorption change at a given surface vertex changes the optical density in a given channel and wavelength.
The coordinate is_brain
holds a mask to distinguish brain and scalp voxels.
[31]:
# load and display sensitivity matrix
Adot = load_Adot(sensitivity_fname)
display(Adot)
<xarray.DataArray (channel: 100, vertex: 25052, wavelength: 2)> Size: 40MB 1.212e-17 1.212e-17 3.962e-20 3.962e-20 ... 1.96e-18 3.815e-16 3.815e-16 Coordinates: parcel (vertex) object 200kB 'VisCent_ExStr_8_LH' ... 'scalp' is_brain (vertex) bool 25kB True True True True ... False False False * channel (channel) object 800B 'S1D1' 'S1D2' 'S1D4' ... 'S14D31' 'S14D32' source (channel) object 800B 'S1' 'S1' 'S1' 'S1' ... 'S14' 'S14' 'S14' detector (channel) object 800B 'D1' 'D2' 'D4' 'D5' ... 'D29' 'D31' 'D32' * wavelength (wavelength) float64 16B 760.0 850.0 Dimensions without coordinates: vertex Attributes: units: mm
Plot Sensitivity Matrix
[32]:
plotter = cedalion.vis.plot_sensitivity_matrix.Main(
sensitivity=Adot,
brain_surface=head.brain,
head_surface=head.scalp,
labeled_points=geo3d_plot,
)
plotter.plot(high_th=0, low_th=-3)
plotter.plt.show()

The sensitivity Adot
has shape (nchannel, nvertex, nwavelenghts). To solve the inverse problem we need a matrix that relates OD in channel space to concentration changes in image space. Hence, the sensitivity must include the extinction coefficients to translate between OD and concentrations. Furthermore, channels at different wavelengths and vertices at different chromophores must be stacked into new dimensions (called 'flat_channel'
and 'flat_vertex'
) to yield the following matrix
equation:
[33]:
Adot_stacked = fwm.compute_stacked_sensitivity(Adot)
Adot_stacked
[33]:
<xarray.DataArray (flat_channel: 200, flat_vertex: 50104)> Size: 80MB 1.635e-15 5.346e-18 5.545e-17 7.044e-18 ... 0.0 4.463e-18 3.12e-16 6.072e-14 Coordinates: is_brain (flat_vertex) bool 50kB True True True ... False False False chromo (flat_vertex) <U3 601kB 'HbO' 'HbO' 'HbO' ... 'HbR' 'HbR' 'HbR' vertex (flat_vertex) int64 401kB 0 1 2 3 4 ... 25048 25049 25050 25051 wavelength (flat_channel) float64 2kB 760.0 760.0 760.0 ... 850.0 850.0 channel (flat_channel) object 2kB 'S1D1' 'S1D2' ... 'S14D31' 'S14D32' source (flat_channel) object 2kB 'S1' 'S1' 'S1' ... 'S14' 'S14' 'S14' detector (flat_channel) object 2kB 'D1' 'D2' 'D4' ... 'D29' 'D31' 'D32' parcel (flat_vertex) object 401kB 'VisCent_ExStr_8_LH' ... 'scalp' Dimensions without coordinates: flat_channel, flat_vertex Attributes: units: 1 / molar
Invert the sensitivity matrix
With 'Adot_stacked'
now being a 2D matrix, its pseudo-inverse can be computed with the function pseude_inverse_stacked
. Different regularization options are implemented and can be controled through the parameters alpha
, alpha_spatial
and Cmeas
.
[34]:
B = pseudo_inverse_stacked(Adot_stacked, alpha = 0.01, alpha_spatial = 0.001)
B
[34]:
<xarray.DataArray (flat_vertex: 50104, flat_channel: 200)> Size: 80MB 4.742e-17 3.465e-16 -1.81e-16 3.54e-16 ... 5.593e-16 -6.023e-17 6.803e-17 Coordinates: is_brain (flat_vertex) bool 50kB True True True ... False False False chromo (flat_vertex) <U3 601kB 'HbO' 'HbO' 'HbO' ... 'HbR' 'HbR' 'HbR' vertex (flat_vertex) int64 401kB 0 1 2 3 4 ... 25048 25049 25050 25051 wavelength (flat_channel) float64 2kB 760.0 760.0 760.0 ... 850.0 850.0 channel (flat_channel) object 2kB 'S1D1' 'S1D2' ... 'S14D31' 'S14D32' source (flat_channel) object 2kB 'S1' 'S1' 'S1' ... 'S14' 'S14' 'S14' detector (flat_channel) object 2kB 'D1' 'D2' 'D4' ... 'D29' 'D31' 'D32' parcel (flat_vertex) object 401kB 'VisCent_ExStr_8_LH' ... 'scalp' Dimensions without coordinates: flat_vertex, flat_channel Attributes: units: molar
Calculate concentration changes
the optical density has shape (nchannel, nwavelength, time). Additional dimensions like ‘trial_type’ in this example are allowed, too.
[35]:
blockaverage
[35]:
<xarray.DataArray (trial_type: 2, channel: 100, wavelength: 2, reltime: 154)> Size: 493kB [] -0.001023 -0.001108 -0.001151 -0.001155 ... 0.0009149 0.001069 0.001239 Coordinates: * reltime (reltime) float64 1kB -5.038 -4.809 -4.58 ... 29.54 29.77 30.0 * channel (channel) object 800B 'S1D1' 'S1D2' 'S1D4' ... 'S14D31' 'S14D32' source (channel) object 800B 'S1' 'S1' 'S1' 'S1' ... 'S14' 'S14' 'S14' detector (channel) object 800B 'D1' 'D2' 'D4' 'D5' ... 'D29' 'D31' 'D32' * wavelength (wavelength) float64 16B 760.0 850.0 * trial_type (trial_type) object 16B 'FTapping/Left' 'FTapping/Right'
To apply the inverted sensitiviy matrix, the OD wavelength and channel dimensions need to be stacked. Then the inverted sensitivity matrix can be multiplied which contracts over 'flat_channel'
and the 'flat_vertex'
dimension remains. The 'flat_vertex'
dimensions contains vertices of the scalp and the brain for both chromophores. These need to be separated. The function fw.apply_inv_sensitiviy
takes care of all of this.
[36]:
dC_brain, dC_scalp = fw.apply_inv_sensitivity(blockaverage, B)
display(dC_brain)
display(dC_scalp)
<xarray.DataArray (trial_type: 2, reltime: 154, chromo: 2, vertex: 15002)> Size: 74MB -1.871e-16 -1.625e-17 -6.146e-18 -3.626e-17 ... 8.237e-16 -4.975e-12 1.71e-16 Coordinates: * chromo (chromo) <U3 24B 'HbO' 'HbR' * vertex (vertex) int64 120kB 0 1 2 3 4 ... 14997 14998 14999 15000 15001 * reltime (reltime) float64 1kB -5.038 -4.809 -4.58 ... 29.54 29.77 30.0 * trial_type (trial_type) object 16B 'FTapping/Left' 'FTapping/Right' is_brain (chromo, vertex) bool 30kB True True True ... True True True parcel (chromo, vertex) object 240kB 'VisCent_ExStr_8_LH' ... 'Backg... Attributes: units: molar
<xarray.DataArray (trial_type: 2, reltime: 154, chromo: 2, vertex: 10050)> Size: 50MB -1.487e-18 -2.786e-19 -2.63e-18 -3.55e-18 ... 2.508e-19 -1.293e-18 -9.278e-18 Coordinates: * chromo (chromo) <U3 24B 'HbO' 'HbR' * vertex (vertex) int64 80kB 15002 15003 15004 ... 25049 25050 25051 * reltime (reltime) float64 1kB -5.038 -4.809 -4.58 ... 29.54 29.77 30.0 * trial_type (trial_type) object 16B 'FTapping/Left' 'FTapping/Right' is_brain (chromo, vertex) bool 20kB False False False ... False False parcel (chromo, vertex) object 161kB 'scalp' 'scalp' ... 'scalp' Attributes: units: molar
Convert concentration changes into micromolar.
[37]:
dC_brain = dC_brain.pint.quantify().pint.to("uM").pint.dequantify()
dC_scalp = dC_scalp.pint.quantify().pint.to("uM").pint.dequantify()
Visualizing image reconstruction results
In the following, different cedalion plot functions will be showcased to visualize concentration changes on the brain and scalp surfaces.
Channel Space
The function cedalion.plots.scalp_plot_gif
allows to create an animated gif of channel-space OD changes projected on the scalp.
Here, it is used to show the time course of the blockaveraged OD changes.
[38]:
from cedalion.plots import scalp_plot_gif
# configure the plot
data_ts = blockaverage.sel(wavelength=850, trial_type="FTapping/Right")
data_ts = data_ts.rename({"reltime": "time"})
geo3d = rec.geo3d
filename_scalp = "scalp_plot_ts"
# call plot function
scalp_plot_gif(
data_ts,
geo3d,
filename=filename_scalp,
time_range=(-5, 30, 0.5) * units.s,
scl=(-0.01, 0.01),
fps=6,
optode_size=6,
optode_labels=True,
str_title="OD 850 nm",
)
[39]:
display_image(f"{filename_scalp}.gif")

Image Space
Single-View Animations of Activitations on the Brain
The function cedalion.plots.image_recon_view
allows to create an animated gif of image-space concentration changes projected on the brain.
[40]:
from cedalion.plots import image_recon_view
filename_view = 'image_recon_view'
X_ts = xr.concat([dC_brain.sel(trial_type="FTapping/Right"), dC_scalp.sel(trial_type="FTapping/Right")], dim="vertex")
X_ts = X_ts.rename({"reltime": "time"})
X_ts = X_ts.transpose("vertex", "chromo", "time")
X_ts = X_ts.assign_coords(is_brain=('vertex', Adot.is_brain.values))
scl = np.percentile(np.abs(X_ts.sel(chromo='HbO').values.reshape(-1)),99)
clim = (-scl,scl)
image_recon_view(
X_ts, # time series data; can be 2D (static) or 3D (dynamic)
head,
cmap='seismic',
clim=clim,
view_type='hbo_brain',
view_position='left',
title_str='HbO / uM',
filename=filename_view,
SAVE=True,
time_range=(-5,30,0.5)*units.s,
fps=6,
geo3d_plot = geo3d_plot,
wdw_size = (1024, 768)
)
[41]:
display_image(f"{filename_view}.gif")

Alternatively, we can just select a single time point and plot activity as a still image at that time. Note the different file suffix (.png).
[42]:
# selects the nearest time sample at t=4s in X_ts
X_ts_plot = X_ts.sel(time=4, method="nearest") # note: sel does not accept quantified units
filename_view = 'image_recon_view_still'
image_recon_view(
X_ts_plot, # time series data; can be 2D (static) or 3D (dynamic)
head,
cmap='seismic',
clim=clim,
view_type='hbo_brain',
view_position='left',
title_str='HbO / uM',
filename=filename_view,
SAVE=True,
time_range=(-5,30,0.5)*units.s,
fps=6,
geo3d_plot = geo3d_plot,
wdw_size = (1024, 768)
)

[43]:
display_image(f"{filename_view}.png")

Multi-View Animations of Activitations on the Brain
The function cedalion.plots.image_recon_multi_view
shows the activity on the brain from all angles as still image or animated across time:
[44]:
from cedalion.plots import image_recon_multi_view
filename_multiview = 'image_recon_multiview'
# prepare data
X_ts = xr.concat([dC_brain.sel(trial_type="FTapping/Right"), dC_scalp.sel(trial_type="FTapping/Right")], dim="vertex")
X_ts = X_ts.rename({"reltime": "time"})
X_ts = X_ts.transpose("vertex", "chromo", "time")
X_ts = X_ts.assign_coords(is_brain=('vertex', Adot.is_brain.values))
scl = np.percentile(np.abs(X_ts.sel(chromo='HbO').values.reshape(-1)),99)
clim = (-scl,scl)
image_recon_multi_view(
X_ts, # time series data; can be 2D (static) or 3D (dynamic)
head,
cmap='seismic',
clim=clim,
view_type='hbo_brain',
title_str='HbO / uM',
filename=filename_multiview,
SAVE=True,
time_range=(-5,30,0.5)*units.s,
fps=6,
geo3d_plot = None, # geo3d_plot
wdw_size = (1024, 768)
)
[45]:
display_image(f"{filename_multiview}.gif")

Multi-View Animations of Activitations on the Scalp
This gives us activity on the scalp after recon from all angles as still image or across time
[46]:
from cedalion.plots import image_recon_multi_view
filename_multiview_scalp = 'image_recon_multiview_scalp'
# prepare data
X_ts = xr.concat([dC_brain.sel(trial_type="FTapping/Right"), dC_scalp.sel(trial_type="FTapping/Right")], dim="vertex")
X_ts = X_ts.rename({"reltime": "time"})
X_ts = X_ts.transpose("vertex", "chromo", "time")
X_ts = X_ts.assign_coords(is_brain=('vertex', Adot.is_brain.values))
scl = np.percentile(np.abs(X_ts.sel(chromo='HbO').values.reshape(-1)),99)
clim = (-scl,scl)
image_recon_multi_view(
X_ts, # time series data; can be 2D (static) or 3D (dynamic)
head,
cmap='seismic',
clim=clim,
view_type='hbo_scalp',
title_str='HbO / uM',
filename=filename_multiview_scalp,
SAVE=True,
time_range=(-5,30,0.5)*units.s,
fps=6,
geo3d_plot = geo3d_plot,
wdw_size = (1024, 768)
)
[47]:
display_image(f"{filename_multiview_scalp}.gif")

Parcel Space
The Schaefer Atlas [SKG+18] as implemented in Cedalion provides nearly 600 labels for different regions of the brain. Each vertex of the brain surface has its correspondng parcel label assigned as a coordinate.
[48]:
head.brain.vertices
[48]:
<xarray.DataArray (label: 15002, ijk: 3)> Size: 360kB [] 77.59 20.68 74.43 84.24 20.3 70.42 ... 130.4 152.2 100.9 96.35 105.7 87.96 Coordinates: * label (label) int64 120kB 0 1 2 3 4 5 ... 14997 14998 14999 15000 15001 * parcel (label) <U44 3MB 'VisCent_ExStr_8_LH' ... 'Background+FreeSurfer... Dimensions without coordinates: ijk
Using parcel labels, vertices belonging to the same brain region can be easily grouped together with the DataArray.groupby
function.
To obtain the average hemodynamic response in a parcel, the baseline-subtraced concentration changes of all vertices in a parcel are averaged. As baseline the first sample is used.
[49]:
# subtract baseline
baseline = dC_brain.isel(reltime=0) # first sample along reltime dimension
dC_brain_blsubtracted = dC_brain - baseline
# average over parcels
avg_HbO = dC_brain_blsubtracted.sel(chromo="HbO").groupby('parcel').mean()
avg_HbR = dC_brain_blsubtracted.sel(chromo="HbR").groupby('parcel').mean()
display(dC_brain_blsubtracted.rename("dC_brain_blsubtracted"))
display(avg_HbO.rename("avg_HbO"))
<xarray.DataArray 'dC_brain_blsubtracted' (trial_type: 2, reltime: 154, chromo: 2, vertex: 15002)> Size: 74MB 0.0 0.0 0.0 0.0 0.0 0.0 ... -6.415e-13 6.379e-06 -1.255e-08 -1.039e-06 1.846e-10 Coordinates: * chromo (chromo) <U3 24B 'HbO' 'HbR' * vertex (vertex) int64 120kB 0 1 2 3 4 ... 14997 14998 14999 15000 15001 * reltime (reltime) float64 1kB -5.038 -4.809 -4.58 ... 29.54 29.77 30.0 * trial_type (trial_type) object 16B 'FTapping/Left' 'FTapping/Right' is_brain (chromo, vertex) bool 30kB True True True ... True True True parcel (chromo, vertex) object 240kB 'VisCent_ExStr_8_LH' ... 'Backg...
<xarray.DataArray 'avg_HbO' (trial_type: 2, reltime: 154, parcel: 602)> Size: 1MB 0.0 0.0 0.0 0.0 0.0 0.0 ... 2.03e-13 7.501e-12 -3.678e-13 1.278e-09 -2.12e-11 Coordinates: chromo <U3 12B 'HbO' * reltime (reltime) float64 1kB -5.038 -4.809 -4.58 ... 29.54 29.77 30.0 * trial_type (trial_type) object 16B 'FTapping/Left' 'FTapping/Right' * parcel (parcel) object 5kB 'Background+FreeSurfer_Defined_Medial_Wal...
The montage in this dataset covers only parts of the head. Consequently, many brain regions lack significant signal coverage due to the absence of optodes.
To focus on relevant regions, a subset of parcels from the somatosensory and motor regions in both hemispheres is selected.
[50]:
selected_parcels = [
"SomMotA_1_LH", "SomMotA_3_LH", "SomMotA_4_LH", "SomMotA_5_LH", "SomMotA_9_LH", "SomMotA_10_LH",
"SomMotA_1_RH", "SomMotA_2_RH", "SomMotA_3_RH", "SomMotA_4_RH", "SomMotA_6_RH", "SomMotA_7_RH"
]
The following plot visualizes the montage and the selected parcels:
[51]:
# map parcel labels to colors
parcel_colors = {
parcel: p.cm.jet(i / (len(selected_parcels) - 1))
for i, parcel in enumerate(selected_parcels)
}
# assign colors to vertices
b = cdc.VTKSurface.from_trimeshsurface(head.brain)
b = pv.wrap(b.mesh)
b["parcels"] = np.asarray([
parcel_colors.get(parcel, (0.8, 0.8, 0.8, .3))
for parcel in head.brain.vertices.parcel.values
])
plt = pv.Plotter()
plt.add_mesh(
b,
scalars="parcels",
rgb=True,
smooth_shading=False
)
cedalion.plots.plot_labeled_points(plt, geo3d_plot)
legends = [a for a in parcel_colors.items()]
plt.add_legend(labels= legends, face='o', size=(0.3,0.3))
cog = head.brain.vertices.mean("label")
cog = cog.pint.dequantify().values
plt.camera.position = cog + [0,0,400]
plt.camera.focal_point = cog
plt.camera.up = [0,1,0]
plt.reset_camera()
plt.show()

Plot averaged time traces in each parcel for the ‘FTapping/Right’ and ‘FTapping/Left’ conditions:
[52]:
f,ax = p.subplots(2,6, figsize=(20,5))
ax = ax.flatten()
for i_par, par in enumerate(selected_parcels):
ax[i_par].plot(avg_HbO.sel(parcel = par, trial_type = "FTapping/Right").reltime, avg_HbO.sel(parcel = par, trial_type = "FTapping/Right").values, "r", lw=2, ls='-')
ax[i_par].plot(avg_HbR.sel(parcel = par, trial_type = "FTapping/Right").reltime, avg_HbR.sel(parcel = par, trial_type = "FTapping/Right").values, "b", lw=2, ls='-')
ax[i_par].grid(1)
ax[i_par].set_title(par, color=parcel_colors[par])
ax[i_par].set_ylim(-.05, .2)
p.suptitle("Parcellations: HbO: r | HbR: b | FTapping/Right", y=1)
p.tight_layout()
f,ax = p.subplots(2,6, figsize=(20,5))
ax = ax.flatten()
for i_par, par in enumerate(selected_parcels):
ax[i_par].plot(avg_HbO.sel(parcel = par, trial_type = "FTapping/Left").reltime, avg_HbO.sel(parcel = par, trial_type = "FTapping/Left").values, "r", lw=2, ls='-')
ax[i_par].plot(avg_HbR.sel(parcel = par, trial_type = "FTapping/Left").reltime, avg_HbR.sel(parcel = par, trial_type = "FTapping/Left").values, "b", lw=2, ls='-')
ax[i_par].grid(1)
ax[i_par].set_title(par, color=parcel_colors[par])
ax[i_par].set_ylim(-.05, .2)
p.suptitle("Parcellations: HbO: r | HbR: b | FTapping/Left", y=1)
p.tight_layout()

