cedalion.models.glm.basis_functions
Temporal basis functions for the GLM.
Classes
|
AFNI gamma basis function, optionally convolved with a square-wave. |
Convoluted with the stim duration this basis function yields a square wave. |
|
|
Modified gamma function, optionally convolved with a square-wave. |
|
Modified gamma func. |
|
A consecutive sequence of gaussian functions. |
|
A consecutive sequence of gaussian functions. |
|
- class cedalion.models.glm.basis_functions.TemporalBasisFunction(convolve_over_duration: bool)[source]
Bases:
ABC
- class cedalion.models.glm.basis_functions.GaussianKernelsWithTails(
- t_pre: cdt.QTime,
- t_post: cdt.QTime,
- t_delta: cdt.QTime,
- t_std: cdt.QTime,
Bases:
TemporalBasisFunction
A consecutive sequence of gaussian functions.
The basis functions have the form:
\[f(t) = \exp( -(t-\mu)^2/t_{std}^2)\]The user specifies a time interval around the stimuls onset via the parameters t_pre and t_post. Over this time interval a series of gaussian basis functions is distributed:
between the gaussian centers there is time gap of t_delta
the width of the each gaussian is specified by t_std
the gaussians are centered in the time interval with a margin of 3 x t_std left and right.
The number of gaussians is derived automatically from these constraints.
- Parameters:
t_pre (
Quantity
, [time]) – time before trial onsett_post (
Quantity
, [time]) – time after trial onsett_delta (
Quantity
, [time]) – the temporal spacing between consecutive gaussianst_std (
Quantity
, [time]) – time width of the gaussians
- class cedalion.models.glm.basis_functions.GaussianKernels(
- t_pre: cdt.QTime,
- t_post: cdt.QTime,
- t_delta: cdt.QTime,
- t_std: cdt.QTime,
Bases:
TemporalBasisFunction
A consecutive sequence of gaussian functions.
The basis functions have the form:
\[f(t) = \exp( -(t-\mu)^2/t_{std}^2)\]The user specifies a time interval around the stimuls onset via the parameters t_pre and t_post. Over this time interval a series of gaussian basis functions is distributed:
between the gaussian centers there is time gap of t_delta
the width of the each gaussian is specified by t_std
the first gaussian is centered at trial onset - t_pre.
the model function extends strictly from -t_pre to t_post with a hard cutoff.
The number of gaussians is derived automatically from these constraints.
- Parameters:
t_pre (
Quantity
, [time]) – time before trial onsett_post (
Quantity
, [time]) – time after trial onsett_delta (
Quantity
, [time]) – the temporal spacing between consecutive gaussianst_std (
Quantity
, [time]) – time width of the gaussians
- class cedalion.models.glm.basis_functions.Gamma(
- tau: cdt.QTime | dict[str, cdt.QTime],
- sigma: cdt.QTime | dict[str, cdt.QTime],
- T: cdt.QTime | dict[str, cdt.QTime],
Bases:
TemporalBasisFunction
Modified gamma function, optionally convolved with a square-wave.
The basis function has the form:
\[f(t) \sim \frac{t-\tau}{\sigma} \exp \left(-\left(\frac{t - \tau}{\sigma}\right)^2\right)\]- Parameters:
tau – Specifies a delay of the response with respect ot stimulus onset time.
sigma – Specifies the width of the hemodynamic reponse.
T – If > 0, the response is additionally convoluted by a square wave of this width.
- class cedalion.models.glm.basis_functions.GammaDeriv(
- tau: cdt.QTime | dict[str, cdt.QTime],
- sigma: cdt.QTime | dict[str, cdt.QTime],
- T: cdt.QTime | dict[str, cdt.QTime],
Bases:
TemporalBasisFunction
Modified gamma func. and its derivative, optionally convolved with a square-wave.
- Parameters:
tau – onset time
sigma – width of the HRF
T – convolution width
- class cedalion.models.glm.basis_functions.AFNIGamma(
- p: float | dict[str, float],
- q: cdt.QTime | dict[str, cdt.QTime],
- T: cdt.QTime | dict[str, cdt.QTime],
Bases:
TemporalBasisFunction
AFNI gamma basis function, optionally convolved with a square-wave.
- Parameters:
p – shape parameter
q – scale parameter
T – convolution width
- class cedalion.models.glm.basis_functions.DiracDelta[source]
Bases:
TemporalBasisFunction
Convoluted with the stim duration this basis function yields a square wave.